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Abstract. In this paper we relax the assumptions of a well known algorithm for continuous global
optimization, Multilevel Single Linkage (MLSL). It is shown that the good theoretical properties
of MLSL are shared by a slightly different algorithm, Non-monotonic MLSL (NM MLSL), but
under weaker assumptions. The main difference with MLSL is the fact that in NM MLSL some
non-monotonic sequences of sampled points are also considered in order to decide whether to start
or not a local search, while MLSL only considers monotonic decreasing sequences. The modification
is inspired by non-monotonic methods for local searches.
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1. Multistart algorithms and multilevel single linkage

Multistart algorithms are well known iterative stochastic methods for the solution
of the global optimization problem

min
x∈X

f (x), X ⊆ <d.
In what follows, the main concepts related to this kind of algorithm are presented.

Let Ck denote the set of points sampled up to iterationk. Let us assume that a
local search procedureLS(·) is available, which receives a point belonging toX as
an input and returns a local minimum off overX. The main part of a Multistart
algorithm is the following:

at iterationk, select a setSk ⊆ Ck of sampled points and apply the procedure
LS to each of them.

In most of the Multistart algorithms presented in the literature the points are sam-
pled from the uniform distribution overX. Multistart algorithms do not, therefore,
employ clever sampling mechanisms. In this kind of algorithm the sampling mech-
anism only has to guarantee that the feasible region is globally explored. Their
cleverness is determined by theLS starting point selection mechanism. In particu-
lar, the selection should avoid two kinds of errors. Before presenting them we need
a definition. Given a local minimumx, the set:

A(x) = {y ∈ X : LS(y) = x},
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26 MARCO LOCATELLI

is called the region of attraction ofx. The two kinds of errors are:

Error I . The region of attraction of a local minimumx contains at least one
sampled point, butLS has never been applied to points in this region; formally

Ck ∩A(x) 6= ∅,
but

(∪kj=1Sj) ∩A(x) = ∅.

Error II . LS has been applied to two or more points belonging to the region of
attraction of a local minimumx so that the same local minimum is detected more
than once; formally

| (∪kj=1Sj) ∩A(x) |> 2.

The main differences between Multistart algorithms consist of the way they try
to avoid the two kinds of errors above through the selection, at each iteration, of
the setSk ’s. Notice that a clever selection ofSk generally implies an increase in the
computational effort. On the other hand, a clever selection also saves computational
effort because good solutions can be reached within a limited number of iterations
and also with a limited number of local searches.

Many papers on Multistart algorithms can be found in the literature (see e.g. [1,
3, 7, 9–13, 15]). In particular, in [10] and [11] one of the best known Multistart
algorithms has been presented, Multilevel Single Linkage (MLSL).

In MLSL the mechanism of selection of the setSk is based on the analysis
of sequences of ‘close’ sampled points with decreasing function values. Before
describing MLSL in more detail, we introduce some notation:

– ∂X is the border ofX;
– d(·, ·) is the euclidean distance;
– m(·) is the Lebesgue measure.

We also introduce the following definition:

DEFINITION 1. Givenr > 0, a sequence{yi}ti=1 satisfying

d(yi, yi+1) 6 r, ∀ i = 1, . . . , t − 1,

and

f (yi+1) < f (yi),

is called a decreasingr-sequence.

The MLSL algorithm can be described as follows:

Initialization . Let the integerN > 0,γ ∈ (0,1] andd1, d2 > 0 be fixed, letk := 1
and

αk := π−1/2

(
0

(
1+ d

2

)
m(X)σ

logkN

kN

)1/d

; (1)
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denote withS∗ the set of already detected local minima and setS∗ = ∅.
Sampling phase. At stepk generate a uniform random sample of sizeN overX.

Reduction of the sample. Sort the whole sample ofkN points in order of increas-
ing function values, and select theγ kN points with the lowest values; the resulting
sampleRk is called reduced sample.

Selection of the setSk. Foreverypointxi ∈ Rk repeat the following procedure:

Consider all the decreasingαk−sequencess1, . . . , sr whose first point isxi , made
up by points inRk and ending at a pointxf inal(si) which satisfies one of the
following conditions:
1. d(xf inal(si), ∂X) 6 d1;
2. d(xf inal(si), S∗) 6 d2;
3. LS has already been applied toxf inal(si);
4. no other pointy ∈ Rk can be found with

d(y, xf inal(si)) 6 αk and f (y) < f (xf inal(si)).

If ∃ i, 1 6 i 6 r, such thatxf inal(si) satisfies conditions 1, 2 or 3 above, then do
not start any local search. Otherwise applyLS to

y∗ = arg min
xj
{f (xj ) : ∃ i, 16 i 6 r, such thatxj ∈ si}.

and if a new local minimum is detected, add it toS∗.

Stopping phase. Check a stopping criterion and, if it fails, return to the sampling
phase withk := k + 1.

An equivalent description of the ‘selection of the setSk’ phase is the following.

Selection of the setSk. Apply LS to all the pointsxi ∈ Rk which satisfy every one
of the following conditions:

– no pointy ∈ Rk exists such that:

d(xi, y) 6 αk, f (y) < f (xi);
– d(xi, ∂X) > d1;
– d(xi, S

∗) > d2;
– LS was not previously applied toxi .

For implementation purposes, this last description is certainly much better than the
previous one. However, the first description makes easier to understand on which
idea MLSL is based. In MLSL, if it can find a decreasingαk−sequence leading
either to a point to whichLS has already been applied and has lead to a local
minimumx∗, or to a point which is close to an already detected local minimumx∗

jogo347.tex; 30/06/1998; 12:37; p.3



28 MARCO LOCATELLI

(i.e.x∗ ∈ S∗), then no local search is started from points belonging to the sequence.
This decision is based on the conjecture that the decreasingαk−sequence can be
seen as generated by a local optimization procedure leading to the already detected
local minimumx∗.

There is actually another case in whichLS is not applied to the points of a
sequence, i.e. when the sequence gets close enough to the border of the feasible
region. That is related to pointd of Assumption 1 introduced below, which requires
that no local minimum exists along the border of the feasible region.

In the description of MLSL, the stopping criterion has not been specified. In
[11, p. 74] the following has been suggested:

stop when
| S∗ | (γ kN − 1)

γ kN− | S∗ | −2
6| S∗ | +1

2
. (2)

For more details about this stopping criterion see [10, p. 32] and the references
therein. Essentially, the left side in (2) is the expected number of local minima of
f overX and we stop when this is not greater than the current number of already
detected local minima plus 0.5. In what follows, the stopping rule problem will
not be further investigated and only the problem of defining a clever local search
starting point selection mechanism will be addressed. Therefore, we refer to the
existing literature on stopping rules (see e.g. [2, pp. 853-864]).

Besides working demonstrably well in practice, MLSL has also good theoretical
properties. In particular, we mention the following properties:

Property I . Every local minimum is detected in finite time with probability one;

Property II . If σ > 4 in (1), then the expected number of local searches started by
the algorithm is finite, even if the algorithm is never stopped.
The first result ensures that after a finite time with probability one there is no Error
I. The second result is not a guarantee against Error II, but even if the algorithm is
never stopped, the expected number of occurrences of this error is finite.

The theoretical results are obtained under the following assumptions:

ASSUMPTION 1.
a. f ∈ C2;
b. X compact, convex and with non empty interior;
c. finite number of stationary points;
d. stationary points in the interior ofX.

The aim of this paper is to introduce a modification of MLSL, through which the
same theoretical properties described above can be obtained, but under weaker
assumptions.

Many functions which may occur in global optimization do not satisfy Assump-
tion 1. For instance, point d excludes all concave functions whose minima belong
to the border of a convex setX, even if for this problem the use of deterministic
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methods seems to be more appropriate (see e.g. [4]). Moreover, a simple function
such as:

f (x, y) =
 x2 + ay2 −16 x 6 1 −16 y 6 0
x2 −16 x 6 1 06 y 6 1
x2 + b(y − 1)2 −16 x 6 1 16 y 6 2

(3)

wherea, b 6= 0 are constants, neither satisfies point a nor point c.
In Section 2, we will introduce a new set of assumptions weaker than Assump-

tion 1. In Section 3, a modification of MLSL is introduced and the differences
between the two algorithms are described. Finally, in Section 4, it is shown that the
theoretical properties of MLSL are preserved, but under the weaker assumptions
introduced in Section 2.

2. Relaxing the assumptions

Now we introduce some definitions, which are a generalization of the classical
definitions of maximum, minimum and saddle points. They are used to relax the
assumption that only a finite number of stationary points are allowed:

DEFINITION 2. LetA′ ⊆ X be a set of points such that either it contains only
one point which is a saddle point or the following are satisfied:
1. A′ is connected and maximal (with respect to the inclusion);
2. ∀ x ∈ A′, f (x) = f (A′) = const ;
3. one of the following is satisfied:

∀ x ∈ A′ ∃ ε = ε(x) > 0 s.t.∀ y ∈ X, d(y, x) 6 ε : f (y) > f (x), (4)

or

∀ x ∈ A′ ∃ ε = ε(x) > 0 s.t.∀ y ∈ X, d(y, x) 6 ε : f (y) 6 f (x). (5)

Let A = cl(A′), i.e.A is the closure ofA′. Notice that iff is continuous, then
∀ x ∈ A, f (x) = f (A) = f (A′). Then we defineA as a

− minimum setif (4) is satisfied and

∃ ε > 0 : ∀ y ∈ X \A, d(y,A) 6 ε H⇒ f (y) > f (A);
− saddle setif one of the following is satisfied:

· it contains only one point which is a saddle point;
· it contains more than one point, either (4) or (5) is satisfied and∀ ε > 0:

∃ y1, y2 ∈ X \A, d(yi, A) 6 ε, i = 1,2 : f (y1) < f (A) < f (y2).

− maximum setif (5) is satisfied and

∃ ε > 0 : ∀ y ∈ X \A, d(y,A) 6 ε H⇒ f (y) < f (A).
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30 MARCO LOCATELLI

A minimum, saddle or maximum set is also called a stationary setand a point
inside a stationary set is called a representantof it.

As an instance, we can consider the function (3), where the setA = {(x, y) :
x = 0, 0 6 y 6 1} is a minimum set ifa, b > 0, while it is a saddle set if
a < 0 < b or b < 0 < a. Notice that any stationary set contains at least one
minimum, saddle or maximum point. Also notice that in this case the procedure
LS will be assumed to return a representant of a stationary set.

Now we are ready to substitute assumptions 1 with some weaker ones:

ASSUMPTION 2.
a. f lipschitzian with Lipschitz constantL;
b. X compact, convex and with non empty interior;
c. there exists a finite number of stationary sets.

It will be assumed thatL > 1. This is not true in general, but it is always true that
we can take an upper bound forL not lower than 1. Therefore in what follows,
L > 1 denotes the Lipschitz constant or an upper bound of it. Moreover, it should
be noted thatL is only used in the theoretical results and it is not necessary to know
its precise value in the modified MLSL algorithm. The Lipschitz constant repre-
sents precious information about the problem, which is often hard to obtain, and
many algorithms have been developed for the case in which it is known (for the in-
terested reader, general books on global optimization such as [4, 5, 14, 16], besides
introducing some techniques, give many references to papers on the subject).

Under Assumption 2, some of the results exploited in [10] and [11] in order to
prove the theoretical results of MLSL, are lost. For instance, the proof of property
II for MLSL is based on Lemma 7 in [10], but the proof of this lemma relies on the
assumptionf ∈ C2. Moreover, dealing with minimum sets instead of minimum
points renders inoperable the fact that if we are at a small distanced1 > 0 from an
already detected minimum we do not start a local search. Indeed, what we detect
is not the whole minimum set but one of its representants and we are only able to
compute the distance from this representant and not from the whole set. Therefore,
there is a larger risk of detecting the same minimum set many times.

3. The new algorithm

We first need a definition.

DEFINITION 3. Letr > 0 ands > 0. A sequence{yi}ti=1 satisfying the following
for anyi, i = 1, . . . , t − 1:

d(yi, yi+1) 6 r,

f (yi+1) < minj<i+1 f (yj )+ s
(6)

is called a(r, s)-sequence.

jogo347.tex; 30/06/1998; 12:37; p.6



RELAXING THE ASSUMPTIONS OF THE MULTILEVEL SINGLE LINKAGE ALGORITHM 31

Notice that decreasingr-sequences are a special case of(r, s)-sequences, in
which s = 0 . We consider the following algorithm:

Initialization. Let k := 1, S∗ = ∅ and consider two sequences of parameters{αk}
and{βk}.
Sampling phase.Sample one pointxk from the uniform distribution overX.

Selection of the setSk. Let s1, . . . , st be all the possible(αk, βk)−sequences{yi}
made up by distinct sampled points (i.e. distinct points inside the setCk), and with
the following characteristics:
1. y1 = xk , i.e. the first point of these sequences is the last sampled point;
2. the final point of these sequences, denoted withxf inal(si), satisfies one of the

following conditions:
a) LS has already been applied to it;
b) d(xf inal(si), S∗) 6 αk;
c) no other point inCk different from those in the sequence and satisfying (6)

with r = αk ands = βk, can be found.
If ∃ i, 16 i 6 t , such thatxf inal(si) satisfies condition (a) or (b), then do not start
any local search. Otherwise, let:

y∗ = arg min
xj
{f (xj ) : ∃ i, 16 i 6 t, such thatxj ∈ si},

and start a local search fromy∗; if a new representant of a minimum set is detected,
add it toS∗.

Notice that only sequences whose first point is the last sampled one are con-
sidered, while in this step of MLSL all sequences whose first point is inRk are
considered.

Stopping phase.Check a stopping criterion (see e.g. (2)) and, if it fails, return to
the sampling phase withk := k + 1.

This modification of MLSL is called Non-monotonic MLSL (NM MLSL). The
reason for this name is the use of(αk, βk)-sequences which are not necessarily
strictly decreasing as in MLSL, but may be non-monotonic. The two main differ-
ences between MLSL and NM MLSL are those written in italics and underlined
in the description of NM MLSL. The second one could actually easily be removed
without losing the theoretical properties proved for NM MLSL in Section 4. On
the other hand, it can be seen that the computational effort which is required by the
analysis of(αk, βk)-sequences is greater than the effort for the analysis of decreas-
ing sequences (see also [8]) and thus it seems reasonable to avoid performing this
analysis for all the sequences whose first point is inRk.

But the most important difference between NM MLSL and MLSL is certainly
the use of the non-monotonic(αk, βk)-sequences instead of the strictly decreasing
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αk-sequences. Actually, if we setβk = 0, ∀ k in NM MLSL, the non-monotonic
(αk, βk)-sequences become decreasing(αk)-sequences, which shows that NM MLSL
is a generalization of MLSL. The idea of introducing non-monotonic sequences
comes from algorithms for unconstrained local optimization in which some as-
cent steps can be made. These have been proven to perform well when applied
to ill-conditioned test functions (see [6]). This also suggests that NM MLSL may
perform better than MLSL when applied to ill-conditioned functions. Some lim-
ited computational experiences seem to confirm this conjecture (see [8]). More
extensive computational experiences will appear elsewhere.

There are other minor differences between MLSL and NM MLSL, which can
be easily removed. When compared with the description of MLSL, we notice that
in NM MLSL we have:
1. the ‘batchsize’N is equal to 1;
2. the valueγ is equal to 1;
3. d1 = 0 andd2 is not a constant but it is equal toαk.

Essentially, some of the MLSL parameters are fixed values in NM MLSL, but the
description of NM MLSL can be modified in order to transform these fixed values
into parameters. Now we are ready to prove that NM MLSL satisfies the same
theoretical properties as MLSL, but under Assumption 2.

4. The theoretical properties

4.1. DETECTION OF THE MINIMUM SETS

We first need a lemma, introduced to deal with the difficulties at the boundary of
X.

LEMMA 1. LetX be convex, bounded and with non-empty interior. Then:

∀ x ∈ X, ∃ β > 0 :

lim
r→0

m(S(x, r) ∩X)
m(S(x, r))

> β, (7)

whereS(x, r) is the sphere of radiusr and centerx.
Proof.See the appendix, p. 39. 2

In what follows we introduce an assumption which seems to be quite reasonable,
also exploited in [10].

ASSUMPTION 3. Given a minimum setA, ∃ ε > 0 : ∀ x ∈ X with d(x,A) 6 ε,
LS applied tox returns a representant ofA.

We also make use of the following proposition whose proof is trivial:

PROPOSITION 1.The stationary sets are compact.
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We can then introduce the following theorem whose proof is inspired by that of
Lemma 11 in [10] and Theorem 2 in [11].

THEOREM 1. If αk, βk → 0, under Assumption 2, the probability that NM MLSL
detects at least one representant of any minimum set in a finite time is equal to one.

Proof.We use the following notation:
– A is a minimum set;
– B(A, ε) = {y : 0< d(y,A) 6 ε};
– L(y) = {x ∈ X : f (x) 6 y};
– for y > f (A), LA(y) is the connected component ofL(y) containingA;
– dmin is the minimum distance between distinct minimum sets.

We first show thatdmin > 0. By contradiction, we assumedmin = 0. Then, since
the number of minimum sets is finite, there exist distinct minimum setsA and
A1 with d(A,A1) = 0. In view of Proposition 1, we must haveA ∩ A1 6= ∅
andf (A) = f (A1). ThenA ∪ A1 is connected and is still a minimum set with
A,A1 ⊂ A∪A1, f (A∪A1) = f (A) = f (A1). But this is a contradiction, because
A andA1 must be maximal with respect to the inclusion.

Now we consider a valueδ = δ(A) such that 0< δ < min{dmin, ε} (ε is the
same as in Assumption 3) and∀ y ∈ B(A, δ), f (y) > f (A) (see the definition of
minimum set). Let

M(A) = min

{
f (y) | y ∈ X, δ

2
6 d(y,A) 6 δ

}
> f (A);

fC(A) = M(A)+ f (A)
2

.

We note thatLA(fC(A)) ⊆ B
(
A, δ2

) ∪ A. Let

KA := min

{
k : αk < δ

2
, βk < fC(A)− f (A)

}
,

and letk > KA. Let us assume that we have never detected a representant of the
minimum setA up to iterationk, and we sample a point inLA(fC(A)). Then, from
(6) with s = αk and r = βk, it follows that we can only consider sequences of
sampled points{xi} such that

f (xi) 6 fC(A)+ βk < M(A). (8)

Sinceαk <
δ
2, we can not have

xi ∈ B
(
A, δ2

) ∪ A and xi+1 6∈ B(A, δ) ∪ A.
Therefore, in order to get out ofB

(
A, δ2

)
, we have to pass acrossB(A, δ)\(B (A, δ2)∪

A). But (8) says this is not possible. So the sequence can not get out ofB
(
A, δ2

)∪A.
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Therefore, if we sample a point inLA(fC(A)) andA has not been detected yet, we
detect it in view of Assumption 3 and the choice ofδ.
Let

hA = m(LA(fC(A))).
Sincef is continuous on a compact set, it is uniformly continuous. Then given

V (A) = fC(A)− f (A), we have

∃ η = η(A) > 0 : ∀ x, y ∈ X : d(x, y) 6 η => | f (x)− f (y) |6 V (A).
(Here we could also exploit lipschitzianity to give a sharper relation betweenη and
V .) Then, for a givenz ∈ A, we have

∀ y ∈ S(z, η), f (y) 6 fC(A),

i.e.S(z, η) ⊆ LA(fC(A)). In view of Lemma 1, for a small enoughη, we have

hA >
β

2
m(S(z, η)) > 0.

Now we consider

K = max
A min.set

KA, (9)

and

h = min
Amin.set

hA, (10)

whereh > 0 andK is finite in view of the existence of a finite number of stationary
sets (see point c of Assumption 2).

Then, given any minimum setA, for k > K, the probability of detectingA
within the iterationk is at least

1− (1− h)k−K → 1,

ask→∞. 2

4.2. NUMBER OF LOCAL SEARCHES

We first introduce two lemmas, which are particularly relevant to the proof of
Theorem 2.

LEMMA 2. Let Assumption 2 hold. Givenx ∈ X, ∃ a minimum setA, dependent
on x, such that∀ w ∈ A, there exists at least one sequence{yi}f inali=1 with the
following characteristics:
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1. the first point in the sequence isx, i.e.y1 = x;
2. the sequence is nonincreasing, i.e.

∀ i, i = 1, . . . , f inal − 1 : f (yi+1) 6 f (yi);
3. we have that

∀ i, i = 2, . . . , f inal − 1 : d(yi, yi+1) = αk

2
,

and

∀ i 6= j, i, j < f inal : d(yi, yj ) >
αk

2
;

4. the final point of the sequence isw, i.e.yf inal = w, and is such that:

d(yf inal, yf inal−1) 6
αk

2
;

5. the length of the sequence is at mostO( 1
αdk
).

Proof.See the appendix, p. 40. 2

Of course, the order of magnitude that we have found for the length of the
sequences{yi} is quite rough and it is probably possible to find better results, but
these would not deeply affect the final results that we are trying to derive.

Now, letx andw be the same as in the previous lemma. Letγk = min{αk, βk}.
We consider the family of sequencesFk(x,w) built in the following way:

x1 = x

x2 ∈ S
(
y2,

δ
2Lγk

) ∩X
x3 ∈ S

(
y3,

δ
2Lγk

) ∩X
...

...

xn ∈ S
(
yn,

δ
2Lγk

) ∩X
...

...

xf inal ∈ S
(
yf inal,

δ
2Lγk

) ∩X,
where, in view of the previous lemma

f inal 6 p(k) = O
(

1

αdk

)
, (11)

i.e.p(k) is an upper bound for the number of points in the sequences inFk(x,w)

and is independent fromx andw. We can prove the following lemma:

LEMMA 3. Let Assumption 2 hold. Ifδ < 1
2, the sequences{xi} belonging to

Fk(x,w) have the following characteristics:
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1. x1 = x;
2. any sequence inFk(x,w) is a (αk, βk)-sequence;
3. d(xf inal, w) 6

αk
2 .

Proof.See the appendix, p. 40. 2

We first need an upper bound for the probability of starting a local search at
iterationk. Only the caseαk, βk → 0 will be considered. The less interesting case
in whichαk 6→ 0 orβk 6→ 0 could easily be treated in an analogous way.

THEOREM 2. Let Assumption 2 hold. Letαk, βk → 0. Then the probability of
starting a local search in NM MLSL at iterationk has an upper bound which is
asymptotic to

P1

α2d
k

exp
{−P2(k −K)γ dk

}+ (1− h)k−K, (12)

whereh is defined in (10),K is an integer constant defined in (9) andP1, P2 > 0
are constants.

Proof.Let k > K. LetA be the same minimum set appearing in Lemma 2 with
x = xk , the last sampled point. Finally, let us denote with

– NLk , the event of not starting a local search at iterationk;
– Lk = NLCk the complement of the eventNLk, i.e. the event of starting a local

search at iterationk;
– Ek , the event that, at iterationk, for anyy ∈ A, some of the sampled points
{xi}ki=K , i.e. the points sampled after iterationK−1, form at least one(αk, βk)-
sequence{xji }si=1 whose final point has distance not greater thanαk from y,
i.e.d(xjs , y) 6 αk;

– Ek(y), the event that, at iterationk, some of the sampled points{xi}ki=K form
at least one sequence belonging to the familyFk(xk, y), for a fixed pointy ∈ A;

– Dk, the event that a representant of the minimum setA has already been
detected before iterationk.

We note that

Dk ∩ Ek H⇒ NLk. (13)

Indeed,Dk implies that a representantx of the minimum setA has been already
detected. SinceEk implies that the points sampled after iterationK−1 form at least
one(αk, βk)-sequence whose final point has distance not greater thanαk from x,
then, from the definition of the algorithm, it follows that no local search is started.

Thus, from (13), we have

P [Lk] 6 P [ECk ∪DC
k ] 6 P [DC

k ] + P [ECk ].
From the proof of Theorem 1, withh defined in (10), we have that

P [DC
k ] 6 (1− h)k−K,
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which is the second term of the upper bound (12) and is independent fromA. In
order to derive the first term we need to find an upper bound forP [ECk ].

SinceA is compact, we can find a set of pointswr ∈ A such that

∀ x ∈ A, ∃ wr : d(wr, x) 6
αk

2
. (14)

The cardinalityc(k) of this set of points has an upper boundu(k), independent

fromA and such thatu(k) = O
(

1
αdk

)
.

We have that

∩c(k)r=1 Ek(wr) H⇒ Ek. (15)

Indeed,∩c(k)r=1 Ek(wr) means that for anyr, r = 1, . . . , c(k), the points sampled
after iterationK − 1 form at least one sequencesr ∈ Fk(xk,wr), which, in view of
Lemma 3 is a(αk, βk)−sequence and has final pointxf inalr such that

∀ r, r = 1, . . . , c(k) : d(xf inalr , wr) 6
αk

2
. (16)

Therefore, from (14) and (16), the triangular inequality implies

∀ x ∈ A ∃ r such thatd(x, xf inalr ) 6 αk,

i.e. ∀ x ∈ A, ∃ r such that the sequencesr is a (αk, βk)−sequence ending at
distance not greater thanαk from x. But this means thatEk is true. Therefore, from
(15) we have

P [ECk ] 6 P [∪c(k)r=1 E
C
k (wr)] 6

c(k)∑
r=1

(P [ECk (wr)]). (17)

Now, let us consider the sequence{yi} defined in Lemma 2 for the casex = xk
andw = wr . Then, we consider the following events:

Mi = ∃ xj , j > K : xj ∈ S
(
yi,

δ

2L
γk

)
, i = 1, . . . , f inal.

If ∩f inali=1 Mi is true, then the sampled points{xi}ki=K form a sequence belonging to
Fk(xk,wr). But that also implies thatEk(wr) is true. Therefore

∩f inali=1 Mi H⇒ Ek(wr),

and then

P [ECk (wr)] 6 P [∪MC
i ] 6

f inal∑
i=1

P [MC
i ], (18)
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Let

mk = m
(
S
(
x, δ

2Lγk
))

m(X)
.

Remembering Lemma 1, we have that

P [MC
i ] 6 (1− βmk)k−K,

which, for anyi, is independent fromyi . Therefore, by also replacingf inal in (18)
with its upper boundp(k) from (11), we have that

P [ECk (wr)] 6 p(k)(1− βmk)k−K, (19)

where the term on the right is independent fromxk andwr .
From (17) and (19), we obtain

P [ECk ] 6
c(k)∑
r=1

p(k)∑
i=1

(1− βmk)k−K 6 u(k)p(k)[1− βmk]k−K,

where the term on the right is independent from the last sampled pointxk, and,
sincemk → 0, it is asymptotic to

u(k)p(k)exp{−β(k −K)mk}.
Sinceu(k), p(k) = O

(
1
αdk

)
andmk = P0γ

d
k for some constantP0 > 0, constants

P1, P2 > 0 must exist such thatP [ECk ] has an upper bound asymptotic to

P1

α2d
k

exp{−P2(k −K)γ dk },

as we wanted to prove. 2

Now we are ready for the final theorem:

THEOREM 3. Let Assumption 2 hold. If

αk :=
(
σ

logk

k

)1/d

βk ∝ αk, (20)

andσ is big enough, the expected number of local searches in NM MLSL is finite.
Proof.We first note that the second term in the upper bound (12) for the proba-

bility of starting a local search at iterationk is the term of a converging series. Thus
we only have to worry about the first term. From the definition ofαk andβk given
in (20), constantsP3 andP4 must exist such that the first term in the upper bound
(12) is equal to

P1k
2

σ 2 log2 k
exp

{
−P4σ

k −K
k

logk

}
= P3k

2

σ 2(log2 k)kσP4
k−K
k

,
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and we note that for a big enoughσ this is the term of a converging series. 2

5. Conclusion

In this paper, a well known algorithm, Multilevel Single Linkage, belonging to the
class of Multistart algorithms, has been introduced. Its theoretical properties have
been presented together with the assumptions under which they hold. Most of these
assumptions have been relaxed and a new algorithm, Non-monotonic MLSL, has
been presented, showing that it shares the same theoretical properties of MLSL
but under a set of weaker assumptions. The main difference between MLSL and
NM MLSL is that MLSL does not start a local search from a point if adecreasing
sequenceexists which goes close to an already detected minimum, while in NM
MLSL non-monotonic sequencesare also considered. The idea is inspired by non–
monotonic algorithms for unconstrained local optimization in which some ascent
steps are allowed and which have been proven to perform well, especially with
ill-conditioned test functions (see [6]).
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Appendix A. Proof of Lemma 1

For any point in the interior ofX the limit is equal to 1. We only need to consider
the points on the border∂X of X. Let y ∈ X \ ∂X andδ > 0 such thatS(y, δ) ⊆
X \ ∂X. Let x ∈ ∂X. We take the segments from x to y and the hyperplane
which divides the sphere in two equal semispheres and is orthogonal tos. The
intersection between the hyperplane and the sphere defines a(d − 1)-dimensional
sphereS′ = S′(x) whose radius isδ. We take the convex envelope ofS′ ∪ {x} and
obtain the setC(x) ⊆ X because of the convexity ofX. The distancel = l(x)

betweenx andS′ can be bounded from above by the finite diameter ofX and from
below byδ, and the bounds are independent fromx. For anyr 6 l we have that
∃ β > 0:

m(S(x, r) ∩X)
m(S(x, r))

>
m(S(x, r) ∩ C(x))

m(S(x, r))
> β > 0,

and from this the result of the lemma follows.
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Appendix B. Proof of Lemma 2

First, we note that∀ x ∈ X, ∃ a continuous curveT = {T (t) : t ∈ [0,1]} ⊆ X,
such that

– T (0) = x;
– T (1) = w ∈ A, whereA is a minimum set;
– f (T (t)) is a non increasing function fort ∈ [0,1].

Notice thatw is a generic point belonging toA.
Then we exploit the following scheme in order to build a sequence with the

characteristics presented in the lemma:
1. lety1 = x and seti := 1;
2. if w ∈ S (yi, αk2 ), then setyi+1 = w and STOP, otherwise go to 3;
3. setyi+1 = T (ti), where

ti = max
{
t : T (t) ∈ ∂S

(
yi,
αk

2

)}
;

4. seti := i + 1 and go back to 2.
Now we want to show that

∀ j > i + 1, j < f inal : d(yi, yj ) >
αk

2
. (21)

By contradiction, we assume that

∃ j > i + 1, j < f inal : d(yi, yj ) <
αk

2
.

Notice that in this case we must haveT (tj−1) ∈ S◦
(
yi,

αk
2

)
, whereS◦ denotes the

interior of the sphere. Then, two cases are possible:
1. the piece of curve{T (t), t ∈ [tj−1,1]} has an empty intersection with∂S

(
yi,

αk
2

)
;

then,w ∈ S◦ (yi, αk2 ); but this is not possible because in this case the sequence
would stop at iterationi with yi+1 = w.

2. The piece of curve{T (t) : t ∈ [tj−1,1]} crosses∂S
(
yi,

αk
2

)
at a pointy = T (t)

with t > tj−1 > ti, but this too is not possible in view of the definition ofti .
Therefore, (21) must hold and the number ofyi cannot be greater than the maxi-
mum number of points that we can place inX whose distance between each other
is not lower thanαk2 . SinceX is bounded, this number is at mostO( 1

αdk
).

Appendix C. Proof of Lemma 3

The fact thatx1 = x is true by definition. The third characteristic, i.e.d(xf inal, w) 6
αk
2 is true because

d(xf inal, yf inal) 6
δ

2L
αk,
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yf inal = w, δ < 1
2 andL > 1. About the second characteristic, we first have to

show that∀ i : d(xi, xi+1) 6 αk. This is true in view of the triangular inequality.
Indeed

d(xi, yi) 6
δ

2L
αk, d(yi, yi+1) 6

αk

2
, d(xi+1, yi+1) 6

δ

2L
αk

⇓
d(xi, xi+1) 6 αk.

Then, we have to show that∀ i
f (xi+1) 6 min

j6i
f (xj )+ βk. (22)

In view of the lipschitzianity off , we have that∀ j 6 i:

f (xj ) > f (yj )− δ2γk,

and also that

f (xi+1) 6 f (yi+1)+ δ
2
γk.

Since∀ j 6 i : f (yj ) 6 f (yi+1), we must have that∀ j 6 i:

f (xi+1) 6 f (yi+1)+ δ
2
γk 6 f (yj )+ δ

2
γk 6 f (xj )+ δγk 6 f (xj )+ βk,

and then (22) holds.
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