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Abstract. In this paper we relax the assumptions of a well known algorithm for continuous global
optimization, Multilevel Single Linkage (MLSL). It is shown that the good theoretical properties

of MLSL are shared by a slightly different algorithm, Non-monotonic MLSL (NM MLSL), but
under weaker assumptions. The main difference with MLSL is the fact that in NM MLSL some
non-monotonic sequences of sampled points are also considered in order to decide whether to start
or not a local search, while MLSL only considers monotonic decreasing sequences. The modification
is inspired by non-monotonic methods for local searches.
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1. Multistart algorithms and multilevel single linkage

Multistart algorithms are well known iterative stochastic methods for the solution
of the global optimization problem

min f(x), X C N9,
xeX

In what follows, the main concepts related to this kind of algorithm are presented.
Let C, denote the set of points sampled up to iterafiohet us assume that a
local search proceduieS(-) is available, which receives a point belongingda@s
an input and returns a local minimum gfover X. The main part of a Multistart
algorithm is the following:
at iteration k, select a sef; C C; of sampled points and apply the procedure
LS to each of them.
In most of the Multistart algorithms presented in the literature the points are sam-
pled from the uniform distribution oveX. Multistart algorithms do not, therefore,
employ clever sampling mechanisms. In this kind of algorithm the sampling mech-
anism only has to guarantee that the feasible region is globally explored. Their
cleverness is determined by the starting point selection mechanism. In particu-
lar, the selection should avoid two kinds of errors. Before presenting them we need
a definition. Given a local minimum, the set:

AX) ={yeX: LS(y) =%},
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26 MARCO LOCATELLI

is called the region of attraction @t The two kinds of errors are:

Error | . The region of attraction of a local minimum contains at least one
sampled point, buL. S has never been applied to points in this region; formally

Cy NARX) # 0,
but
(U5_1S) N AGF) = 0.

Error Il . LS has been applied to two or more points belonging to the region of
attraction of a local minimurix so that the same local minimum is detected more
than once; formally

| (USLiS) N AG) (2 2.

The main differences between Multistart algorithms consist of the way they try
to avoid the two kinds of errors above through the selection, at each iteration, of
the setS;’s. Notice that a clever selection §f generally implies an increase in the
computational effort. On the other hand, a clever selection also saves computational
effort because good solutions can be reached within a limited number of iterations
and also with a limited number of local searches.

Many papers on Multistart algorithms can be found in the literature (see e.g. [1,
3, 7, 9-13, 15]). In particular, in [10] and [11] one of the best known Multistart
algorithms has been presented, Multilevel Single Linkage (MLSL).

In MLSL the mechanism of selection of the st is based on the analysis
of sequences of ‘close’ sampled points with decreasing function values. Before
describing MLSL in more detail, we introduce some notation:

— 0X is the border ofX;

— d(-, ) is the euclidean distance;

— m(-) is the Lebesgue measure.

We also introduce the following definition:

DEFINITION 1. Givenr > 0, a sequencgy;}_, satisfying
dyi,yviz1) <r, Vi=1...,t—1
and
Sivn) < fi),
is called a decreasing-sequence.
The MLSL algorithm can be described as follows:

Initialization . Let the intege®V > 0,y € (0, 1]andd,, d> > 0 be fixed, lek := 1
and

d logkN \**
o ::nl/z(F (1+§)m(X)a 2N ) : (1)
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denote withS* the set of already detected local minima andSet @.
Sampling phase At stepk generate a uniform random sample of skever X.

Reduction of the sample Sort the whole sample &V points in order of increas-
ing function values, and select thé N points with the lowest values; the resulting
sampler, is called reduced sample.

Selection of the sefS;. Foreverypointx; € R, repeat the following procedure:

Consider all the decreasing —sequences,, ... , s, whose first point is;;, made
up by points inR, and ending at a point s, (s;) which satisfies one of the
following conditions:

1. d(xfina(si), 0X) < di;

2. d(xfinal<si)’ S*) < d21

3. LS has already been applied49;,; (s;);

4. no other poiny € R, can be found with

d(y’ xfinal<si)) < o and f(y) < f(xfinal<si))-

If 34, 1 <i < r,such that s, (s;) satisfies conditions 1, 2 or 3 above, then do
not start any local search. Otherwise apply to

y' =argminf(x;) : 3i, 1<i <r, suchthat; € s;}.
Xj
and if a new local minimum is detected, add itSta

Stopping phase Check a stopping criterion and, if it fails, return to the sampling
phase withk := k + 1.

An equivalent description of the ‘selection of the $gtphase is the following.

Selection of the sefS;. Apply LS to all the pointsy; € R, which satisfy every one
of the following conditions:
— no pointy € R, exists such that:

dxi,y) <o, [ < fx);

— d(x;,0X) > dq;

— d(x;, S*) > do;

— LS was not previously applied tq.
For implementation purposes, this last description is certainly much better than the
previous one. However, the first description makes easier to understand on which
idea MLSL is based. In MLSL, if it can find a decreasiag—sequence leading
either to a point to whichL S has already been applied and has lead to a local
minimumx*, or to a point which is close to an already detected local minimtim
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28 MARCO LOCATELLI

(i.e.x* € §*), then no local search is started from points belonging to the sequence.
This decision is based on the conjecture that the decreagingequence can be
seen as generated by a local optimization procedure leading to the already detected
local minimumx*.

There is actually another case in whiél$ is not applied to the points of a
sequence, i.e. when the sequence gets close enough to the border of the feasible
region. Thatis related to poidtof Assumption 1 introduced below, which requires
that no local minimum exists along the border of the feasible region.

In the description of MLSL, the stopping criterion has not been specified. In
[11, p. 74] the following has been suggested:

| S*| (ykN — 1) 1
<) SF|+=. 2
AN 5] 2 | S* 1 +5 (2)

stop when

For more details about this stopping criterion see [10, p. 32] and the references
therein. Essentially, the left side in (2) is the expected number of local minima of
f overX and we stop when this is not greater than the current number of already
detected local minima plus.® In what follows, the stopping rule problem will
not be further investigated and only the problem of defining a clever local search
starting point selection mechanism will be addressed. Therefore, we refer to the
existing literature on stopping rules (see e.g. [2, pp. 853-864]).

Besides working demonstrably well in practice, MLSL has also good theoretical
properties. In particular, we mention the following properties:

Property |. Every local minimum is detected in finite time with probability one;

Property Il . If o > 4 in (1), then the expected number of local searches started by
the algorithm is finite, even if the algorithm is never stopped.
The first result ensures that after a finite time with probability one there is no Error
I. The second result is not a guarantee against Error Il, but even if the algorithm is
never stopped, the expected number of occurrences of this error is finite.

The theoretical results are obtained under the following assumptions:

ASSUMPTION 1.
a. fecC?
b. X compact, convex and with non empty interior;
c. finite number of stationary points;
d. stationary points in the interior ofX.

The aim of this paper is to introduce a modification of MLSL, through which the
same theoretical properties described above can be obtained, but under weaker
assumptions.

Many functions which may occur in global optimization do not satisfy Assump-
tion 1. For instance, point d excludes all concave functions whose minima belong
to the border of a convex séd, even if for this problem the use of deterministic
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methods seems to be more appropriate (see e.g. [4]). Moreover, a simple function
such as:
x? 4 ay? -1<x<1 -1<y<0
fx,y) =14 x? -1<x<1 0g<yx<1 (3)
X2+b(y—1% —-1<x<1 1<y<2

wherea, b # 0 are constants, neither satisfies point a nor point c.

In Section 2, we will introduce a new set of assumptions weaker than Assump-
tion 1. In Section 3, a modification of MLSL is introduced and the differences
between the two algorithms are described. Finally, in Section 4, it is shown that the
theoretical properties of MLSL are preserved, but under the weaker assumptions
introduced in Section 2.

2. Relaxing the assumptions

Now we introduce some definitions, which are a generalization of the classical
definitions of maximum, minimum and saddle points. They are used to relax the
assumption that only a finite number of stationary points are allowed:

DEFINITION 2. Let A’ C X be a set of points such that either it contains only
one point which is a saddle point or the following are satisfied:

1. A’ is connected and maximal (with respect to the inclusion)

2.Vxe A, f(x) = f(A") = const,

3. one of the following is satisfied:

VxeATde=€x)>0stVyeX, dy,x)<e: f(y=fkx), 4)
or
VxeAde=€x)>0stVyeX,dyx)<e: f(y <fkx). (5)

Let A = cI(A"), i.e. A is the closure ofd’. Notice that if f is continuous, then
VxeA, f(x)=f(A) = f(A"). Then we defind as a

— minimum seif (4) is satisfied and
Je>0:VyeX\A, d(y,A)<e = [y > f(A)

— saddle seif one of the following is satisfied:

- it contains only one point which is a saddle point;
- it contains more than one point, either (4) or (5) is satisfied sird> O:

dy, e X\A,d(y,A) <e,i=12: f() < f(A) < f(y2).

— maximum seif (5) is satisfied and

de>0: VyeX\A, diy,A)<e = f(y) < f(A).
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30 MARCO LOCATELLI

A minimum, saddle or maximum set is also called a stationargsdta point
inside a stationary set is called a representahtt.

As an instance, we can consider the function (3), where thd set{(x, y) :
x =0, 0 <y < 1} is a minimum set ifa, b > 0, while it is a saddle set if
a < 0 < borb < 0 < a. Notice that any stationary set contains at least one
minimum, saddle or maximum point. Also notice that in this case the procedure
LS will be assumed to return a representant of a stationary set.

Now we are ready to substitute assumptions 1 with some weaker ones:

ASSUMPTION 2.
a. f lipschitzian with Lipschitz constaut;
b. X compact, convex and with non empty interior;
c. there exists a finite number of stationary sets.

It will be assumed thak > 1. This is not true in general, but it is always true that
we can take an upper bound farnot lower than 1. Therefore in what follows,
L > 1 denotes the Lipschitz constant or an upper bound of it. Moreover, it should
be noted thaL is only used in the theoretical results and it is not necessary to know
its precise value in the modified MLSL algorithm. The Lipschitz constant repre-
sents precious information about the problem, which is often hard to obtain, and
many algorithms have been developed for the case in which it is known (for the in-
terested reader, general books on global optimization such as [4, 5, 14, 16], besides
introducing some techniques, give many references to papers on the subject).
Under Assumption 2, some of the results exploited in [10] and [11] in order to
prove the theoretical results of MLSL, are lost. For instance, the proof of property
Il for MLSL is based on Lemma 7 in [10], but the proof of this lemma relies on the
assumptionf e C?. Moreover, dealing with minimum sets instead of minimum
points renders inoperable the fact that if we are at a small distanse0 from an
already detected minimum we do not start a local search. Indeed, what we detect
is not the whole minimum set but one of its representants and we are only able to
compute the distance from this representant and not from the whole set. Therefore,
there is a larger risk of detecting the same minimum set many times.

3. The new algorithm
We first need a definition.

DEFINITION 3. Letr > Oands > 0. A sequencgy; }_, satisfying the following
foranyi,i=1,...,tr— 1

d(yi, yiv1) <,
_ (6)
S iz <min;ipq f(y)) +5

is called a(r, s)-sequence.
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Notice that decreasing-sequences are a special case(of)-sequences, in
whichs = 0 . We consider the following algorithm:

Initialization. Letk := 1, S* = ¢ and consider two sequences of paramefers
and{f}.

Sampling phase Sample one point, from the uniform distribution ovek.

Selection of the setSy. Letsy, ... , s; be all the possibléw,, 8;)—sequencesy; }
made up by distinct sampled points (i.e. distinct points inside th€,9eand with
the following characteristics:
1. y1 = xi, i.e. the first point of these sequences is the last sampled point;
2. the final point of these sequences, denoted wjth, (s;), satisfies one of the
following conditions:
a) LS has already been applied to it;
b) d(xfinal<si), S*) < g,
¢) no other point irC, different from those in the sequence and satisfying (6)
with r = o, ands = S, can be found.
If 34, 1< i <t,suchthatry;,,(s;) satisfies condition (a) or (b), then do not start
any local search. Otherwise, let:

y =argminf(x;) : 3i, 1<i <t suchthat; € s},
Xj

and start a local search frop; if a new representant of a minimum set is detected,
add it toS*.
Notice that only sequences whose first point is the last sampled one are con-
sidered, while in this step of MLSL all sequences whose first pointRs are
considered.

Stopping phase Check a stopping criterion (see e.g. (2)) and, if it fails, return to
the sampling phase with:= &k + 1.

This modification of MLSL is called Non-monotonic MLSL (NM MLSL). The
reason for this name is the use @f;, 8;)-sequences which are not necessarily
strictly decreasing as in MLSL, but may be non-monotonic. The two main differ-
ences between MLSL and NM MLSL are those written in italics and underlined
in the description of NM MLSL. The second one could actually easily be removed
without losing the theoretical properties proved for NM MLSL in Section 4. On
the other hand, it can be seen that the computational effort which is required by the
analysis of(«y, Bi)-sequences is greater than the effort for the analysis of decreas-
ing sequences (see also [8]) and thus it seems reasonable to avoid performing this
analysis for all the sequences whose first point igjn

But the most important difference between NM MLSL and MLSL is certainly
the use of the non-monotoniay, Bx)-sequences instead of the strictly decreasing
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32 MARCO LOCATELLI

ag-sequences. Actually, if we sgf = 0, V k in NM MLSL, the non-monotonic

(o, Br)-sequences become decreasimg-sequences, which shows that NM MLSL

is a generalization of MLSL. The idea of introducing non-monotonic sequences
comes from algorithms for unconstrained local optimization in which some as-
cent steps can be made. These have been proven to perform well when applied
to ill-conditioned test functions (see [6]). This also suggests that NM MLSL may
perform better than MLSL when applied to ill-conditioned functions. Some lim-
ited computational experiences seem to confirm this conjecture (see [8]). More
extensive computational experiences will appear elsewhere.

There are other minor differences between MLSL and NM MLSL, which can
be easily removed. When compared with the description of MLSL, we notice that
in NM MLSL we have:

1. the ‘batchsizeN is equal to 1;

2. the valuey is equal to 1;

3. d; = 0 andd, is not a constant but it is equal &Q.
Essentially, some of the MLSL parameters are fixed values in NM MLSL, but the
description of NM MLSL can be modified in order to transform these fixed values
into parameters. Now we are ready to prove that NM MLSL satisfies the same
theoretical properties as MLSL, but under Assumption 2.

4. The theoretical properties
4.1. DETECTION OF THE MINIMUM SETS

We first need a lemma, introduced to deal with the difficulties at the boundary of
X.

LEMMA 1. LetX be convex, bounded and with non-empty interior. Then:

VxeX, 38>0:

m(S(x,r)yNX) S

= ’ 7
r—>0  m(S(x,r)) ()
whereS(x, r) is the sphere of radius and centety.

Proof. See the appendix, p. 39. O

In what follows we introduce an assumption which seems to be quite reasonable,
also exploited in [10].

ASSUMPTION 3. Given a minimum set,3¢€ > 0: Vx € X withd(x, A) <€,
LS applied tox returns a representant of.

We also make use of the following proposition whose proof is trivial:

PROPOSITION 1. The stationary sets are compact.
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We can then introduce the following theorem whose proof is inspired by that of
Lemma 11 in [10] and Theorem 2 in [11].

THEOREM 1. If 4, Br — 0, under Assumption 2, the probability that NM MLSL
detects at least one representant of any minimum set in a finite time is equal to one.
Proof. We use the following notation:
A is a minimum set;
B(A,e) ={y: 0<d(y,A) <€}
Liy)={xeX: f(x) <y}
fory > f(A), L,(y)isthe connected componentbfy) containingA;
— d,in 1S the minimum distance between distinct minimum sets.
We first show thatl,,;, > 0. By contradiction, we assumg,;,, = 0. Then, since
the number of minimum sets is finite, there exist distinct minimum geend
A1 with d(A, A;) = 0. In view of Proposition 1, we must have N A; # 0
and f(A) = f(A1). ThenA U A, is connected and is still a minimum set with
A, A1 C AUA4, f(AUA)) = f(A) = f(Ay). Butthis is a contradiction, because
A andA; must be maximal with respect to the inclusion.
Now we consider a valué = §(A) such that O< § < min{d,,;,, €} (€ is the
same as in Assumption 3) aNdy € B(A, 3), f(y) > f(A) (see the definition of
minimum set). Let

. )

M(A):mln{f(y)l y € X, > <d(y, A) <5} > f(A);
M(A A

fC(A):%f().

We note thatL 4 (fc(A)) € B (A, $) U A. Let

. )
Ky = mln{k: oy < > Br < fC(A)—f(A)},

and letk > K,4. Let us assume that we have never detected a representant of the
minimum setA up to iterationk, and we sample a point ih, (fc(A)). Then, from

(6) withs = a; andr = By, it follows that we can only consider sequences of
sampled point$x;} such that

S(xi) < fc(A) + B < M(A). (8)
Sinceq;, < % we can not have
x;€B(A,3)UA and x.1 & B(A,8)UA.

Therefore, in order to get out & (A, $), we have to pass acroBsA, §)\(B (A, §)U
A). But (8) says this is not possible. So the sequence can not getBL(mf%)UA.
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Therefore, if we sample a point ih, (fc(A)) andA has not been detected yet, we
detect it in view of Assumption 3 and the choicedof
Let

hy = m(Ls(fc(A))).

Sincef is continuous on a compact set, it is uniformly continuous. Then given
V(A) = fc(A) — f(A), we have

An=n(A)>0:Vx,ye X : dx,y) <n =>| f(x)— f(y) IS V(A).

(Here we could also exploit lipschitzianity to give a sharper relation betweeml
V.) Then, for a givery € A, we have

VyeSmnm, [fO) < fc(h),

i.e.S(z,n) C Ls(fc(A)). Inview of Lemma 1, for a small enough we have

ha > gm(s(z, n) > 0.

Now we consider

K= max Ky, )
A min.set
and
h= min  hy, (20)
A min.set

whereh > 0 andK is finite in view of the existence of a finite number of stationary
sets (see point c of Assumption 2).

Then, given any minimum set, for k > K, the probability of detectingd
within the iterationk is at least

1—-1-nrk 51,

ask — oo. O

4.2. NUMBER OF LOCAL SEARCHES

We first introduce two lemmas, which are particularly relevant to the proof of
Theorem 2.

LEMMA 2. Let Assumption 2 hold. Givene X, 3 a minimum se#d, dependent
on ¥, such thaty w € 4, there exists at least one sequer{gg/"1" with the

following characteristics:
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1. the first point in the sequenceXsi.e. y; = X;
2. the sequence is nonincreasing, i.e.

Vi,i=1,..., final —1: f(yi;1) < fO);
3. we have that

Vi, i=2..., final—1: d(y,yis1) = “—2"
and
C, . Ok
Vi#j, i,j< final: d(yi,y;) = >
4. the final point of the sequenceus i.e. ys;,y = w, and is such that:
(0479 .
2 9
5. the length of the sequence is at mosty).
Y
Proof. See the appendix, p. 40. O

d(yfinalv yfinalfl) <

Of course, the order of magnitude that we have found for the length of the
sequencesy;} is quite rough and it is probably possible to find better results, but
these would not deeply affect the final results that we are trying to derive.

Now, letx andw be the same as in the previous lemma. ket min{oy, Bi}.

We consider the family of sequencgg(x, w) built in the following way:

X1 = X
x2e€ S (yz, %yk) nx
x3e S (yg, %yk) nx

Xp € S(ym %Vk)mx

X final € S (yfinah %Vk) NnX,
where, in view of the previous lemma

final < ptk) =0 (id), (12)
o

k

i.e. p(k) is an upper bound for the number of points in the sequencés(in w)
and is independent fromandw. We can prove the following lemma:

LEMMA 3. Let Assumption 2 hold. ¥ < 1, the sequencesy;} belonging to
Fi(x, w) have the following characteristics:
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1 x1=%x;
2. any sequence i, (x, w) is a (ax, Br)-sequence;
3. d(xfinalv w) < a7k-
Proof. See the appendix, p. 40. O

We first need an upper bound for the probability of starting a local search at
iterationk. Only the casey,, B — O will be considered. The less interesting case
in whicha, 4 0 or B, 4 0 could easily be treated in an analogous way.

THEOREM 2. Let Assumption 2 hold. Let;, 8, — 0. Then the probability of
starting a local search in NM MLSL at iteratioh has an upper bound which is
asymptotic to

ai,fld exp{—Pa(k — K)y{} + 1 — ) F, (12)
where# is defined in (10)K is an integer constant defined in (9) awg, P, > 0
are constants.

Proof.Letk > K. Let A be the same minimum set appearing in Lemma 2 with
X = xi, the last sampled point. Finally, let us denote with

— NL,, the event of not starting a local search at iteralipn

- L= NL,f the complement of the eveML,, i.e. the event of starting a local

search at iteratioh;
— E;, the event that, at iteratioh, for anyy € A, some of the sampled points

{x; f.‘:K, i.e. the points sampled after iterati&n-1, form at least onéx;, B:)-
sequencdx, }!_; whose final point has distance not greater thafrom y,
e.d(xj,y) <oy,

— Ei(y), the event that, at iteratioh some of the sampled points; }*_, form
at least one sequence belonging to the farfjlgx,, y), for a fixed pointy € A;

— Dy, the event that a representant of the minimum Adias already been
detected before iteratian

We note that

Di.NE, — NL,. (13)

Indeed, D, implies that a representamtof the minimum setd has been already

detected. Sincé&; implies that the points sampled after iterati&nr-1 form at least

one (o, Br)-sequence whose final point has distance not greaterathénom x,

then, from the definition of the algorithm, it follows that no local search is started.
Thus, from (13), we have

P[L] < P[EFf UDE] < PIDf1+ PLEC].
From the proof of Theorem 1, with defined in (10), we have that

PIDf1< (1—h) kK,
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which is the second term of the upper bound (12) and is independentArdm
order to derive the first term we need to find an upper boundfdi{ ].
SinceA is compact, we can find a set of points € A such that

VieA, 3Jw,: d(w,,x)go‘—zk. (14)

The cardinalityc(k) of this set of points has an upper boum¢k), independent
from A and such that (k) = O (aid)
We have that '
N‘Y Ev(w,) = Eq. (15)
Indeed,mjg Er(w,) means that for any, r = 1, ..., c(k), the points sampled

after iterationk — 1 form at least one sequengec F (x;, w,), which, in view of
Lemma 3 is day, Br)—sequence and has final poiy;,.;, such that

%
>
Therefore, from (14) and (16), the triangular inequality implies

Vi, r=1...,ck): d&fina,, w,) < (16)

Vxe A 3Ir such thatd(x,xf,-,,alr) < oy,

i.e.Y x € A, 3 r such that the sequence is a (ax, Bx)—sequence ending at
distance not greater thaf from x. But this means thaf is true. Therefore, from
(15) we have

c(k)

PIE{] < PIUY) ES (w)] < ) (PLES (w)))). (17)
r=1

Now, let us consider the sequenjge} defined in Lemma 2 for the cage= x;
andw = w,. Then, we consider the following events:

5
M;=3x;, j>2K: ijS(y,-,Zyk>, i=1,..., final.

If mf:i’i“’Mi is true, then the sampled points }*_, form a sequence belonging to
Fi(x;, w,). But that also implies thak, (w,) is true. Therefore

n2M, = E(w,),

and then

final
PIE{ (w)] < PIUMF]I< ) PIMS], (18)
i=1
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Let

m (S (x, 3 ))
m(X) ’
Remembering Lemma 1, we have that

PIMF]1 < (1— Bmp)* kK,

myp =

which, for anyi, is independent frory;. Therefore, by also replacinfinal in (18)
with its upper bound (k) from (11), we have that

PLEf ()] < p(k)(L = Bmp)* %, (19)
where the term on the right is independent froprandw, .
From (17) and (19), we obtain

c(k) p(k)
PIESI< Y ) (1= pmo) ™ <upoll — pml* %,

r=1i=1

where the term on the right is independent from the last sampled pgifind,
sincem; — 0, it is asymptotic to

u(k) p(kyexp{—p(k — Kym]}.

Sinceu(k), p(k) = O (%,) andm; = Poy{ for some constan®y > 0, constants
Y
Py, P, > 0 must exist such tha?[ EC ] has an upper bound asymptotic to

P,
@ exp{—Pa(k — K)y{},

as we wanted to prove. d

Now we are ready for the final theorem:
THEOREM 3. Let Assumption 2 hold. If

1/d
= (alo%k) Br o a, (20)
ando is big enough, the expected number of local searches in NM MLSL is finite.

Proof. We first note that the second term in the upper bound (12) for the proba-
bility of starting a local search at iteratidris the term of a converging series. Thus
we only have to worry about the first term. From the definitioyoind 8, given
in (20), constants’; and P, must exist such that the first term in the upper bound
(12) is equal to

P1k? exp{ » k—Klng} P3k?
o 2, — 40 = “K °
k o2(log? kyk 7
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and we note that for a big enougtthis is the term of a converging series. 0O

5. Conclusion

In this paper, a well known algorithm, Multilevel Single Linkage, belonging to the
class of Multistart algorithms, has been introduced. Its theoretical properties have
been presented together with the assumptions under which they hold. Most of these
assumptions have been relaxed and a new algorithm, Non-monotonic MLSL, has
been presented, showing that it shares the same theoretical properties of MLSL
but under a set of weaker assumptions. The main difference between MLSL and
NM MLSL is that MLSL does not start a local search from a point dfexreasing
sequenceexists which goes close to an already detected minimum, while in NM
MLSL non-monotonic sequencage also considered. The idea is inspired by non—
monotonic algorithms for unconstrained local optimization in which some ascent
steps are allowed and which have been proven to perform well, especially with
ill-conditioned test functions (see [6]).
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Appendix A. Proof of Lemma 1

For any point in the interior ok the limit is equal to 1. We only need to consider
the points on the bordeéxX of X. Lety € X \ dX andé > 0 such thatS(y, §) <
X\ 0X. Letx € 9X. We take the segmentfrom x to y and the hyperplane
which divides the sphere in two equal semispheres and is orthogonralTiwe
intersection between the hyperplane and the sphere defifaes 4)-dimensional
sphereS’ = §'(x) whose radius i8. We take the convex envelope &fU {x} and
obtain the setC(x) € X because of the convexity df. The distancé = I(x)
betweernr andS’ can be bounded from above by the finite diameteX @nd from
below by, and the bounds are independent frontor anyr < I we have that
18 >0:

m(S(x,r)NX) S m(S(x,r)NC(x))
m(Sx,r) ~  m(S(x,r)

=B >0,

and from this the result of the lemma follows.
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Appendix B. Proof of Lemma 2

First, we note that x € X, 3 a continuous curv& = {T'(t) : t € [0,1]} C X,
such that
- T0) =x;
— T(1) = w € A, whereA is a minimum set;
— f(T(¢v)) is a non increasing function fere [0, 1].
Notice thatw is a generic point belonging ta.
Then we exploit the following scheme in order to build a sequence with the
characteristics presented in the lemma:
1. lety; =x and set := 1,
2. ifw e S(y. %), then sety;,1 = w and STOP, otherwise go to 3;
3. sety; .1 = T(¢;), where

(077
= max{z . T(t) €3S <y,-, 3>} :
4. seti :=i + 1 and go back to 2.
Now we want to show that

Vj>i+1, j< final : d(yl-,yj)>a—. (21)
By contradiction, we assume that
dj>i+1 j< final: d(y;,y;) < =

Notice that in this case we must haVg;_1) € S° (yl-, %k) whereS° denotes the
interior of the sphere. Then, two cases are possible:

1. the piece of curvgT (¢), t € [t;_1, 1]} has an empty intersection wigts (yl-, %k);
then,w € S° (y,», ‘%); but this is not possible because in this case the sequence
would stop at iteration with y; ;1 = w.

2. The piece of curvéT (1) : ¢ € [t;_1, 1]} crossed) S (y;, %) ata poinfy = T'(7)
with 7 > ¢;,_4 > 1;, but this too is not possible in view of the definitionzaf

Therefore, (21) must hold and the numberypttannot be greater than the maxi-
mum number of points that we can placeXnwhose distance between each other
is not lower thart}-. SinceX is bounded, this number is at mc@(é).

Appendix C. Proof of Lemma 3

The fact thatc; = X is true by definition. The third characteristic, idx ¢inq, w) <
% is true because

1)
d(xfinalv yfinal) < Zaka
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Yrma = w, 8 < 3 andL > 1. About the second characteristic, we first have to
show thatv i : d(x;, x;y1) < ax. This is true in view of the triangular inequality.
Indeed

1) (075 1)
d(x;, y;) < o % d(y;, yi+1) < > d(Xit1, Yit1) < > %
U

d(x;i, xit1) < ag.

Then, we have to show thst;
S(xiy1) < r}Lilnf(xj) + Bk (22)

In view of the lipschitzianity off, we have thaV¥ j < i:

)
fxp) = f(y) — Ve

and also that

)
fxigd) < fQig) + > Ve

SinceV j <i: f(y;) < f(yi+1), we must have that j < i:

) )
S(xiv) < fig) + >k < f(y)) + SV < f(xj) + 6y < fx)) + B,

and then (22) holds.
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